翻訳と辞書
Words near each other
・ Cycloteuthidae
・ Cycloteuthis
・ Cycloteuthis sirventi
・ Cyclothea
・ Cyclotheca
・ Cyclothems
・ Cyclothiazide
・ Cyclothiazomycin
・ Cyclothone
・ Cyclothorax
・ Cyclothymia
・ Cyclothyris
・ Cyclotide
・ Cyclotol
・ Cyclotomic character
Cyclotomic fast Fourier transform
・ Cyclotomic field
・ Cyclotomic identity
・ Cyclotomic polynomial
・ Cyclotomic unit
・ Cyclotorna
・ Cyclotorna diplocentra
・ Cyclotorna egena
・ Cyclotorna ementita
・ Cyclotorna experta
・ Cyclotorna monocentra
・ Cyclotosaurus
・ Cyclotrachelus
・ Cyclotrichium
・ Cyclotridecane


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cyclotomic fast Fourier transform : ウィキペディア英語版
Cyclotomic fast Fourier transform
The cyclotomic fast Fourier transform is a type of fast Fourier transform algorithm over finite fields.〔S.V. Fedorenko and P.V. Trifonov, 〕 This algorithm first decomposes a DFT into several circular convolutions, and then derives the DFT results from the circular convolution results. When applied to a DFT over GF(2^m), this algorithm has a very low multiplicative complexity. In practice, since there usually exist efficient algorithms for circular convolutions with specific lengths, this algorithm is very efficient.
== Background ==
The discrete Fourier transform over finite fields finds widespread application in the decoding of error-correcting codes such as BCH codes and Reed–Solomon codes. Generalized from the complex field, a discrete Fourier transform of a sequence \_^ over a finite field GF(''p''''m'') is defined as
:F_j=\sum_^f_i\alpha^, 0\le j\le N-1,
where \alpha is the ''N''-th primitive root of 1 in GF(''p''''m''). If we define the polynomial representation of \_^ as
:f(x) = f_0+f_1x+f_2x^2+\cdots+f_x^=\sum_^f_ix^i,
it is easy to see that F_j is simply f(\alpha^j). That is, the discrete Fourier transform of a sequence converts it to a polynomial evaluation problem.
Written in matrix format,
:\mathbf=\left(\vdots \\ F_\end\right )=
\left(&\cdots & \alpha^0\\
\alpha^0 & \alpha^1 &\cdots &\alpha^\\
\vdots &\vdots & \ddots & \vdots \\
\alpha^ & \alpha^ &\cdots & \alpha^
\end\right
)
\left()=\mathcal\mathbf.

Direct evaluation of DFT has an O(N^2) complexity. Fast Fourier transforms are just efficient algorithms evaluating the above matrix-vector product.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cyclotomic fast Fourier transform」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.